Uber System Design
Uber is a ride-sharing platform that connects riders with drivers. Let's analyze its system design.
System Requirements
Functional Requirements
- User registration and authentication
- Real-time ride matching
- Location tracking
- Payment processing
- Rating system
- Trip history
Non-Functional Requirements
- High availability
- Low latency
- Real-time updates
- Scalability
- Data consistency
Architecture
High-Level Design
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Mobile │ │ API │ │ Services │
│ Apps │────▶│ Gateway │────▶│ Layer │
└─────────────┘ └─────────────┘ └─────────────┘
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Message │ │ Storage │
│ Queue │ │ Layer │
└─────────────┘ └─────────────┘
Components
-
Mobile Applications
- Rider app
- Driver app
- Real-time location updates
- Push notifications
-
API Gateway
- Request routing
- Authentication
- Rate limiting
- Load balancing
-
Microservices
- User Service
- Location Service
- Matching Service
- Payment Service
- Notification Service
-
Message Queue
- Kafka for event streaming
- RabbitMQ for task queues
- Real-time updates
- Event processing
-
Storage
- PostgreSQL for user data
- Redis for caching
- MongoDB for trip data
- Cassandra for location data
Data Models
User
{
"user_id": "123",
"type": "rider",
"name": "John Doe",
"email": "john@example.com",
"phone": "+1234567890",
"payment_methods": [
{
"id": "pm_123",
"type": "credit_card",
"last4": "4242"
}
]
}
Trip
{
"trip_id": "t123",
"rider_id": "123",
"driver_id": "456",
"status": "completed",
"pickup_location": {
"lat": 37.7749,
"lng": -122.4194
},
"dropoff_location": {
"lat": 37.7833,
"lng": -122.4167
},
"start_time": "2023-01-01T00:00:00Z",
"end_time": "2023-01-01T00:30:00Z",
"fare": 25.50,
"rating": 5
}
Key Features
Ride Matching
-
Location Tracking
- Real-time GPS updates
- Geohashing
- Proximity search
- Location history
-
Matching Algorithm
- Driver availability
- Distance calculation
- Rating consideration
- Surge pricing
Payment Processing
- Multiple payment methods
- Split payments
- Refund handling
- Fraud detection
Scaling Strategies
Location Service
- Geohashing for efficient queries
- Sharding by region
- Caching hot locations
- Batch processing
Database Scaling
- Sharding by region
- Read replicas
- Caching layer
- Data partitioning
Challenges
-
Real-time Updates
- Location accuracy
- Network latency
- Battery consumption
- Data consistency
-
Matching Algorithm
- Fairness
- Efficiency
- Scalability
- Dynamic pricing
-
Payment Processing
- Security
- Reliability
- Compliance
- Fraud prevention